成年人在线观看视频免费,国产第2页,人人狠狠综合久久亚洲婷婷,精品伊人久久

我要投稿 投訴建議

《一次函數(shù)的圖象和性質》教學設計

時間:2021-03-05 15:52:51 教學設計 我要投稿

《一次函數(shù)的圖象和性質》教學設計

  一、目的要求

《一次函數(shù)的圖象和性質》教學設計

  1.使學生能畫出正比例函數(shù)與一次函數(shù)的圖象。

  2.結合圖象,使學生理解正比例函數(shù)與一次函數(shù)的性質。

  3.在學習的基礎上,使學生進一步理解正比例函數(shù)和一次函數(shù)的概念。

  二、內容分析

  1、對函數(shù)的研究,在初中階段,只能是初步的。從方法上,是用初等方法,即傳統(tǒng)的初等數(shù)學的方法,而不是用極限、導數(shù)等高等數(shù)學的基本工具,并且,比起高中對函數(shù)的研究,更多地依賴于圖象的直觀,從研究的內容上,通常,包括定義域、值域、函數(shù)的變化特征等方面。關于定義域,只是在開始學習函數(shù)概念時,有一個一般的簡介,在具體學習幾種數(shù)時,就不一一單獨講述了,關于值域,初中暫不涉及,至于函數(shù)的變化特征,像上升、下降、極大、極小,以及奇、偶性、周期性,連續(xù)性等,初中只就一次函數(shù)與反比例函效的升降問題略作介紹,其它,在初中都不做為基本教學要求。

  2、關于一次函數(shù)圖象是直線的問題,在前面學習13.3節(jié)時,利用幾何學過的角平分線的性質,對函數(shù)y=x的圖象是一條直線做了一些說明,至于其它種類的一次函數(shù),則只是在描點畫圖時,從直觀上看出,它們的`圖象也都是一條直線,教科書沒有對這個結論進行嚴格的論證,對于學生,只要求他們能結合y=x的圖象以及其它一些一次函數(shù)圖象的實例,對這個結論有一個直觀的認識就可以了。

  三、教學過程

  復習提問:

  1.什么是一次函數(shù)?什么是正比例函數(shù)?

  2.在同一直角坐標系中描點畫出以下三個函數(shù)的圖象:

  y=2x y=2x-1 y=2x+1

  新課講解:

  1.我們畫過函數(shù)y=x的圖象,并且知道,函數(shù)y=x的圖象上的點的坐標滿足橫坐標與縱坐標相等的條件,由幾何上學過的角平分線的性質,可以判斷,函數(shù)y=x,這是一個一次函數(shù)(也是正比例函數(shù)),它的圖象是一條直線。

  再看復習提問的第2題,所畫出的三個一次函數(shù)的圖象,從直觀上看,也分別是一條直線。

  一般地,一次函數(shù)的圖象是一條直線。

  前面我們在畫一次函數(shù)的圖象時,采用先列表、描點,再連續(xù)的方法.現(xiàn)在,我們明確了一次函數(shù)的圖象都是一條直線。因此,在畫一次函數(shù)的圖象時,只要在坐標平面內描出兩個點,就可以畫出它的圖象了。

  先看兩個正比例項數(shù),

  y=0.5x

  與 y=-0.5x

  由這兩個正比例函數(shù)的解析式不難看出,當x=0時,

  y=0

  即函數(shù)圖象經(jīng)過原點.(讓學生想一想,為什么?)

  除了點(0,0)之外,對于函數(shù)y=0.5x,再選一點(1,0.5),對于函數(shù)y=-0.5x。再選一點(1,一0.5),就可以分別畫出這兩個正比例函數(shù)的圖象了。

  實際畫正比例函數(shù)y=kx(k≠0)的圖象,一般按以以下三步:

  (1)先選取兩點,通常選點(0,0)與點(1,k);

  (2)在坐標平面內描出點(0, o)與點(1,k);

  (3)過點(0,0)與點(1,k)做一條直線.

  這條直線就是正比例函數(shù)y=kx(k≠0)的圖象.

  觀察正比例函數(shù) y=0.5x 的圖象.

  這里,k=0.5>0.

  從圖象上看, y隨x的增大而增大.

  再觀察正比例函數(shù)y=-0.5x 的圖象。

  這里,k=一0.5<0

  從圖象上看, y隨x的增大而減小

  實際上,我們還可以從解析式本身的特點出發(fā),考慮正比例函數(shù)的性質.

  先看

  y=0.5x

  任取兩對對應值. (x1,y1)與(x2,y2),

  如果x1>x2,由k=0.5>0,得

  0.5x1>0.5x2

  即yl>y2

  這就是說,當x增大時,y也增大。

  類似地,可以說明的y=-0.5x 性質。

  從解析式本身特點出發(fā)分析正比例函數(shù)性質,可視學生程度考慮是否向學生介紹。

  一般地,正比例函數(shù)y=kx(k≠0)有下列性質:

 。1)當k>0時,y隨x的增大而增大;

  (2)當k<0時,y隨x的增大而減小。

  2、講解教科書13.5節(jié)例1.與畫正比例函數(shù)圖象類似,畫一次函數(shù)圖象的關鍵是選取適當?shù)膬牲c,然后連線即可,為了描點方便,對于一次函數(shù)

  y=kx+b(k,b是常數(shù),k≠0)

  通常選取

  (o,b)與(-

  兩點,

  對于例 l中的一次函效

  y=2x+1與y=-2x+1

  就分別選取

  (o,1)與(一0.5,2),

  還有

  (0,1)—與(0.5.0).

  在例1之后,順便指出,一次函數(shù)y=kx+b的圖象,習慣上也稱為直線) y=kx+b

  結合例1中的兩個一次函數(shù)的圖象,就可以得到與正比例函數(shù)類似的關于一次函數(shù)的兩條性質。

  對于一次函數(shù)的性質,也可以從一次函數(shù)的解析式分析得出,這與正比例函數(shù)差不多。

  課堂練習:

  教科書13.5節(jié)第一個練習第l—2題,在做這兩道練習時,可結合實例進一步說明正比例函數(shù)與一次函數(shù)的有關性質。

  課堂小結:

  1.正比例函數(shù)y=kx圖象的畫法:過原點與點(1,k)的直線即所求圖象.

  2. 一次函數(shù)y=kx+b圖象的畫法:在y軸上取點(0,6),在x軸上取點,0),過這兩點的直線即所求圖象.

  3.正比例函數(shù)y=kx與一次函數(shù)y=kx+b的性質(由學生自行歸納).

  四、課外作業(yè)

  1.教科書習題13.5a組第l一3題.

  2.選作教科書習題13.5b組第1題.

【《一次函數(shù)的圖象和性質》教學設計】相關文章:

比例的意義和基本性質教學設計7篇03-17

《比例的基本性質》教學設計03-31

《分數(shù)的基本性質》教學設計范文05-09

分數(shù)的基本性質教學設計范文03-30

《條形統(tǒng)計圖》教學設計04-25

《與象共舞》教學設計范文(精選12篇)10-08

人教版數(shù)學《小數(shù)的性質》教學設計(通用25篇)04-13

8和9的教學設計09-11

《分數(shù)的基本性質》教學設計范文(精選5篇)05-09

《牛和鵝》 教學設計03-24